CITIC Tower

![CITIC Tower Image](image)

Height:
- **To Tip:** 527.7 m / 1,731 ft
- **Architectural:** 527.7 m / 1,731 ft
- **Occupied:** 513.5 m / 1,685 ft

Energy Label:
LEED-CS Gold Precertification, China Certificate of Green Building Label-Three Star

Rankings:
- **Global Ranking:** #8 Tallest in the World
- **Regional Ranking:** #5 Tallest in Asia
- **National Ranking:** #4 Tallest in China
- **City Ranking:** #1 Tallest in Beijing

Facts

<table>
<thead>
<tr>
<th>Fact</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Official Name</td>
<td>CITIC Tower</td>
</tr>
<tr>
<td>Other Names</td>
<td>China Zun, Zhongguo Zun</td>
</tr>
<tr>
<td>Structure Type</td>
<td>Building</td>
</tr>
<tr>
<td>Status</td>
<td>Completed</td>
</tr>
<tr>
<td>Country</td>
<td>China</td>
</tr>
<tr>
<td>City</td>
<td>Beijing</td>
</tr>
<tr>
<td>Street Address & Map</td>
<td>Lot Z15 Guanghua Road, CBD Core, Chaoyang District</td>
</tr>
<tr>
<td>Postal Code</td>
<td>100022</td>
</tr>
<tr>
<td>Building Function</td>
<td>office</td>
</tr>
<tr>
<td>Structural Material</td>
<td>composite</td>
</tr>
<tr>
<td></td>
<td>- Core: Concrete Encased Steel</td>
</tr>
<tr>
<td></td>
<td>- Columns: Concrete Filled Steel</td>
</tr>
<tr>
<td></td>
<td>- Floor Spanning: Steel</td>
</tr>
<tr>
<td>Energy Label</td>
<td>LEED-CS Gold Precertification, China Certificate of Green Building Label-Three Star</td>
</tr>
<tr>
<td>Proposed</td>
<td>2012</td>
</tr>
<tr>
<td>Construction Start</td>
<td>2013</td>
</tr>
<tr>
<td>Completion</td>
<td>2018</td>
</tr>
</tbody>
</table>

Companies Involved

Owner/Developer:
- CITIC HEYE Investment CO., LTD.

Architect:
- Concept: TFP Farrells
- Design: Kohn Pedersen Fox Associates
- Architect of Record: Beijing Institute of Architectural Design
- Peer Review: CITIC General Institute of Architectural Design & Research Co., Ltd

Structural Engineer:
- Design: Arup
- Engineer of Record: Beijing Institute of Architectural Design

MEP Engineer:
- Design: WSP
- Engineer of Record: Beijing Institute of Architectural Design

Main Contractor:
- China Construction Third Engineering Bureau Co., Ltd.

Other Consultant:
- Cost: China Construction Jingcheng Project Consultants; WT Partnership
- Energy Concept: Azbil Control Solutions
- Façade: ALT Limited
- Façade Maintenance: Altitude Façade Access Consulting Pty Ltd
- Fire: Arup
- LEED: EMSI
- Lighting: Brandston Partnership, Inc.
- Property Management: Beijing Zhongjie beishi; JLL
- Sustainability: Qinghua University
- Traffic: MVA Transportation, Planning & Management Consultants
About CITIC Tower

CITIC Tower will be the flagship building of Beijing’s comprehensively planned 30-hectare central business district core.

The tower’s gently rising and curving form resembles an ancient Chinese ceremonial vessel, called the "zun." The design concept is that of a transforming shell that gradually bends to create a dramatic form. This concept is also applied to other key elements of the tower, including the entrances, ground-floor lobby, and observation deck. At the base, the tower thrusts into the ground with massive corner supports, while the exterior shell is gently lifted up and stretched forward at the four sides. The design physically extends the lobby outward, forming dynamic drop-off spaces. At the top, the exterior envelope becomes more transparent at the observation deck and allows more visibility to the inner trumpet-shaped business center, which lights up at night, forming a beacon that will be visible throughout the city.

Compared to a typically straight or tapering supertall tower form, the concave tower profile offers more valuable prime-floor spaces and ample space for window washing, as well as other support systems, at the top of the tower. While the large top poses significant structural challenges, the larger base provides an opportunity for structural balance, formal contrast, and preferred core-to-perimeter distances.

In a city with the highest seismic fortification requirement of the major cities in China, the structural system was particularly sensitive to adjustments in the complex form of the building. Architects and engineers utilized parametric modeling to greatly expedite the design and coordination process to ensure that the design achieved both an iconic form and a solid structural system.