Solaris
Singapore
Height 79.19 m / 260 ft
Floors 15
Official Name

The current legal building name.

Solaris
Type

CTBUH collects data on two major types of tall structures: 'Buildings' and 'Telecommunications / Observation Towers.' A 'Building' is a structure where at least 50% of the height is occupied by usable floor area. A 'Telecommunications / Observation Tower' is a structure where less than 50% of the structure's height is occupied by usable floor area. Only 'Buildings' are eligible for the CTBUH 'Tallest Buildings' lists.

Building
Status
Completed
Architecturally Topped Out
Structurally Topped Out
Under Construction
Proposed
On Hold
Never Completed
Vision
Competition Entry
Canceled
Proposed Renovation
Under Renovation
Renovated
Under Demolition
Demolished
Completed, 2011
Country

The CTBUH follows the United Nations's definition of Country, and thus uses the lists and codes established by that organization.

City

The CTBUH follows the United Nations's definition of City, and thus uses the lists and codes established by that organization.

Function

A single-function tall building is defined as one where 85% or more of its usable floor area is dedicated to a single usage. Thus a building with 90% office floor area would be said to be an "office" building, irrespective of other minor functions it may also contain.

A mixed-use tall building contains two or more functions (or uses), where each of the functions occupy a significant proportion of the tower's total space. Support areas such as car parks and mechanical plant space do not constitute mixed-use functions. Functions are denoted on CTBUH "Tallest Building" lists in descending order, e.g., "hotel/office" indicates hotel function above office function.

office
Structural Material

Steel
Both the main vertical/lateral structural elements and the floor spanning systems are constructed from steel. Note that a building of steel construction with a floor system of concrete planks or concrete slab on top of steel beams is still considered a “steel” structure as the concrete elements are not acting as the primary structure.

Reinforced Concrete
Both the main vertical/lateral structural elements and the floor spanning systems are constructed from concrete which has been cast in place and utilizes steel reinforcement bars.

Precast Concrete
Both the main vertical/lateral structural elements and the floor spanning system are constructed from steel reinforced concrete which has been precast as individual components and assembled together on-site.

Mixed-Structure
Utilizes distinct systems (e.g. steel, concrete, timber), one on top of the other. For example, a steel/concrete indicates a steel structural system located on top of a concrete structural system, with the opposite true of concrete/steel.

Composite
A combination of materials (e.g. steel, concrete, timber) are used together in the main structural elements. Examples include buildings which utilize: steel columns with a floor system of reinforced concrete beams; a steel frame system with a concrete core; concrete-encased steel columns; concrete-filled steel tubes; etc. Where known, the CTBUH database breaks out the materials used in a composite building’s core, columns, and floor spanning separately.

concrete
Height

Height is measured from the level of the lowest, significant, open-air, pedestrian entrance to the architectural top of the building, including spires, but not including antennae, signage, flag poles or other functional-technical equipment. This measurement is the most widely utilized and is employed to define the Council on Tall Buildings and Urban Habitat (CTBUH) rankings of the "World's Tallest Buildings."

Architectural
79.19 m / 260 ft
To Tip
79.19 m / 260 ft
Occupied
65.39 m / 215 ft
Floors Above Ground

The number of floors above ground should include the ground floor level and be the number of main floors above ground, including any significant mezzanine floors and major mechanical plant floors. Mechanical mezzanines should not be included if they have a significantly smaller floor area than the major floors below. Similarly, mechanical penthouses or plant rooms protruding above the general roof area should not be counted. Note: CTBUH floor counts may differ from published accounts, as it is common in some regions of the world for certain floor levels not to be included (e.g., the level 4, 14, 24, etc. in Hong Kong).

15
Floors Below Ground

The number of floors below ground should include all major floors located below the ground floor level.

3
# of Parking Spaces

Number of Parking Spaces refers to the total number of car parking spaces contained within a particular building.

302
# of Elevators

Number of Elevators refers to the total number of elevator cars (not shafts) contained within a particular building (including public, private and freight elevators).

16
Tower GFA

Tower GFA refers to the total gross floor area within the tower footprint, not including adjoining podiums, connected buildings or other towers within the development.

32,119 m² / 345,726 ft²
Construction Schedule
2008

Proposed

2008

Construction Start

2011

Completed

Structural Engineer

Stormwater Management

Owner
JTC Corporation
Developer
SB (Solaris) Investment P/L
Architect
TR Hamzah & Yeang
CPG Consultants
Structural Engineer
MEP Engineer
CPG Consultants
Contractor
Soil Build Pte Ltd

Stormwater Management

CTBUH Awards & Distinctions

Best Tall Building Asia & Australasia 2012 Award of Excellence

2012 CTBUH Awards

CTBUH Initiatives

Solaris Chosen as Featured Building


15 January 2013 - Featured Building

Research

16 September 2014

CTBUH Research

The latest CTBUH technical guide, Green Walls in High-Rise Buildings, provides a thorough investigation of the methods used around the world for implementation of vertical...

About Solaris

The approach when designing the Solaris towers was to create a completely ecological site. Instead of replacing natural habitat with a built environment, the design sought to create a maximum amount of habitable green spaces in addition to a sustainable building. Two towers were designed to house research and development facilities, connected with a passively ventilated atrium.

The site is located at the edge of Singapore’s Central Business District in the Fusionopolis development, an area dedicated to research and development in a variety of fields. The site was originally a military base, which meant that most of the original ecological system had been destroyed. The response to this issue was to highlight the existing landscape while contributing to it.

The building boasts a 36% reduction in overall energy consumption compared to relevant precedents, as well as a 108% ratio of landscape to site area. This was accomplished by integrating fully landscaped areas directly into the façade of the building. A linear “green ramp” was designed to connect the ground level with all areas of the building, wrapping around and winding its way up the towers while accessing terraces and gardens along the way. This landscaped element allows for the connection of ecosystems and the movement of species between them to improve biodiversity on the site.

Occupiable roof gardens and terraces offer spaces for the building users to enjoy during breaks, or to use for events. These areas not only contribute to the improvement of the user experience, but also create a distinct buffer between the building envelope and the elements, reducing solar gain and reflection. Along with this, planted areas and solar shades were incorporated with a double-glazed wall system to further decrease the effects of solar exposure. The ETTV (external thermal transfer value) of the full system is less than 39 watts per square meter.

An extensive rainwater harvesting system is employed throughout the building, using siphonic drainage to hold up to 700 cubic meters of water for irrigation of the green spaces. The system also ensures recycling of any water that goes through the full system.

The design of the building also responds directly to its environment and occupant needs. The atrium allows for daylighting of the internal spaces in the building, and is fully passively cooled. A rain-check wall is employed at the perimeter to allow for ventilation during conditions of precipitation, and a vented roof takes advantage of the stack effect for cooling. Computational fluid dynamics was used to refine the design of the atrium to ensure optimal conditions. The louvers are controlled by climate-responsive sensors to adjust them when necessary. To cross between towers though the atrium, skybridges were added. Additionally, a light shaft was cut through the taller portion of the building to allow for greater daylight penetration. The internal spaces connected with the light shaft have automatic sensors to control lighting when daylight proves adequate.

Solaris received a 97.5 rating from Singapore’s GreenMark program, denoting a Platinum certification. The building also came in at 6.3% below industry cost standards, while providing over 8,000 square meters of landscaped area.

CTBUH Awards & Distinctions

Best Tall Building Asia & Australasia 2012 Award of Excellence

2012 CTBUH Awards

16 September 2014

CTBUH Research

The latest CTBUH technical guide, Green Walls in High-Rise Buildings, provides a thorough investigation of the methods used around the world for implementation of vertical...

15 January 2013

Solaris Chosen as Featured Building

Though it is not particularly tall, the building is commended for its contributions to the exploration of the urban habitat.

Submit images or information about this project using the Data & Image Submission Portal